www.enviro-tec.com

HVAC Quick Reference

CHANGING WATER FLOW IN A GIVEN CLOSED PIPING SYSTEM

 $(GPM \div C_V Ball Valve)^2 \times (Qty. of Ball Valves) + (GPM \div C_V Strainer)^2 +$

 $(GPM \div C_V Flow Control)^2 + (GPM \div C_V Control Valve)^2$

PRESSURE DROP FOR VALVE PACKAGE

 $bD^{5} = bD^{1} (GbM^{5} \div GbM^{1})^{5}$

= Pressure Drop (PSI)

COMPONENTS

ET50.35-TD2 (615)

© 2015 Johnson Controls, Inc. P.O. Box 423, Milwaukee, WI 53201

FAN LAWS - Changing Fan RPM on a Given Fan System

MOTOR HEAT

BTUH = BHP x 2547 ÷ Efficiency

FAN HORSEPOWER

BHP = CFM x Static Pressure (Inches) 6356 x Static Efficiency

MOTOR ELECTRICAL CALCULATIONS

ALL MOTORS

AMPS =

KW Input BHP x .746 Efficiency

SINGLE PHASE MOTORS

AMPs x Volts x Power Factor 1000

746 x BHP Efficiency x Volts x Power Factor

THREE PHASE MOTORS

AMPs x Volts x 1.732 x P.F. KW = 1000

AMPS = 746 x BHP

Efficiency x Volts x P.F. x 1.732

ELECTRIC HEAT CALCULATIONS

* Air density at sea level. Reduce by 0.036 for each 1000 feet of altitude above sea level.

LAT = Leaving Air Temperature EAT = Entering Air Temperature Heaters > 48 AMPs are subdivided and fused

HEATER AMP		
CALCULATION		
VOLTAGE	AMPs per kW	
115/1	8.70	
120/1	8.33	
208/1	4.81	
230/1	4.35	
240/1	4.17	
277/1	3.61	
208/3	2.78	
230/3	2.51	
240/3	2.41	
460/3	1.26	
480/3	1.20	
575/3	1.00	
600/3	.962	

CAPACITY CALCULATIONS =

12,000 BTUH Water Side (no glycol) BTUH = 500 x GPM x ΔT 1.08 x CFM x Δ T x ADR* Sensible Heat BTUH

Latent Heat BTUH 0.68 x CFM x Grain Difference x ADR* = Total Heat BTUH 4.5 x CFM x Enthalpy Difference x ADR*

Pressure of Water in Feet 2.31 x PSI * ADR=Air = Density Ratio

Pump Horsepower BHP = GPM x Head in Feet $\Delta PSIG = (GPM \div C_{V})^{2}$ 3960 x Pump Efficiency

AIR BALANCING

1 Ton

$$\mathbf{V} = \mathsf{CFM} \div \mathsf{Area} \quad \mathbf{P}_{\mathbf{V}} = (\mathsf{V} \div 4005)^2$$

 $\mathbf{P_S} = \mathbf{P_T} - \mathbf{P_V}$ (inches of water column)

Altitude	Air Density Ratio at 70°F Air Temp.
2000	.930
4000	.864
6000	.801
8000	.743

For Glycol: 20% use 475, 30% use 464. 40% use 449, 50% use 433

V = Velocity (fpm). $P_V = Velocity Pressure$. $P_S = Static Pressure$. $P_T = Total Pressure$.